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SPECTRA OF ERGODIC GROUP ACTIONS 

BY 

KLAUS SCHMIDT 

ABSTRACT 

Let G be a locally compact second countable abelian group, (X, ~t) a o--finite 
Lebesgue space, and (g, x )---> gx a non-singular, properly ergodic action of G on 
(X, ~). Let furthermore F be the character group of G and let Sp(G, X ) C  F 
denote the L®-spectrum of G on (X, ~t). It has been shown in [5] that Sp(G, X)  
is a Borel subgroup of F and that ~(Sp(G, X))  < 1 for every probability measure 
cr on F with lim sups_® Re ~-(g) < 1, where ~- is the Fourier transform of ~. In 
this note we prove the following converse: if ~r is a probability measure on F 
with lira sups~® Re ~'(g)--- 1 then there exists a non-singular, properly ergodie 
action of G on (X,~t) with cr(Sp(G,X))= 1. 

Let G be a locally compact, second countable, non-compact abelian group, 

(X,/~) a or-finite Lebesgue space, and ( g , x ) ~ g x  a non-singular, properly 

ergodic action of G on (X,/.t). An element y ~ F, the character group of (3, is 

said to belong to the L®-spectrum Sp(G, X) of this action of G if there exists a 

non-zero function f E L®(X, I~) with f (gx)= y(g)f(x)/~-a.e. ,  for every g ~ G. 

Sp(G, X) is clearly a subgroup of F, and it is not difficult to verify that it is also a 

Borel set. It is furthermore known that Ar(Sp(G,X))=O, where Ar is the 
Haar-measure on F, but that Sp(G, X) may be uncountable. The following result 
gives a complete metric characterization of the possible subgroups which may 

occur as Sp(G, X). 

THEOREM. Let G be a locally compact, second countable, non-compact, 
abelian group with character group F, and let or be a probability measure on F with 
Fourier transform dr. The following conditions are equivalent. 

(1) There exists a non-singular, properly ergodic action ( g , x ) ~  gx of G on a 

Lebesgue space (X, ~ ) such that or(Sp(G, X)) = 1, 

(2) limsups_~Re 6 ( g ) =  1, where Re denotes the real part. 

PROOF. The implication (1) f f  (2) is an immediate consequence of theorem 

4.1 in [5]. To prove the converse, let or be a probability measure on F satisfying 
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(2), and let ~r' be a purely atomic probability measure on F with tr'({1})> 0, and 

whose set of atoms is dense in F. Put z = tr*tr', where * denotes convolution. An 

elementary argument shows that lim sups_®Re ~ ( g ) =  1 (for an explicit proof 

see lemma 3.4 in [7]). Furthermore, if B C F is a Borel set with z(B)  = 1, then we 

clearly have t r ( B ) =  1. It will thus be sufficient to construct a Lebesgue space 

(X, t t)  and a non-singular, properly ergodic action (g,x)~ gx of G on ( X , # )  

with z(Sp(G, X)) = 1. Let X = q/(F, 7, S 1) be the group of T-equivalence classes 

of Borel maps from F to S' ,  the multiplicative group of complex numbers of 

modulus 1, under pointwise multiplication and furnished with the metric 

d(x,,xz)= f ]xl(y)-x2(y)]dz(y), x,,x2EX. 

(X,d)  is a complete, separable metric group, and G acts continuously and 

isometrically on X by gx(y)  = y (g )x (y )  for every x E X and g ~ G. This action 

of G on X is free (i.e. gx~x whenever g ~  e), and, in particular, the map 

g ~ g. 1 = x s from G into X is injective (here 1 denotes the constant function 1 

in X). From lim sups-® Re "~(g) = 1 we conclude that lim infs_® d (x,, xs) = 0, so 

that the map g--~ xs is not a homeomorphism onto its image. By [1, theorem 1 

and 4, theorem 2.6] there exists a probability measure /z on X which is 

quasi-invariant and ergodic under G and which is not concentrated on a single 

G-orbit (for a more detailed discussion of this phenomenon and its applications 

we refer to [8]). In other words, the action (g,x)---~gx of G on (X,t~) is 

non-singular and properly ergodic Consider now the map F : F x X ~ S 1 given 

by F ( y , x ) =  x(y).  By [9, lemma 8.5] F is well-defined z ×/~-a.e. and may be 

chosen to be a Borel map. Since F(y, gx)= y(g)F(y,x) z ×/~-a.e., for every 

g E G, we can use Fubini's theorem to find a Borel set S C F with z(S) = 1, and 

such that F(y,  g x ) =  3/(g)F(',/, x) Ao x/~-a.e.,  for every y E S, where A6 denotes 

the Haar measure of G. Applying once again Fubini's theorem we can find, for 

every y E S, a Borel set Xv ( X with/~ (X,) = 1 and with F(y,  gx) = y(g)F(y ,  x) 

Aa-a.e., for every x E X,. A standard argument now shows that F ( y , . )  is an 

eigenfunction with eigenvalue y, for every y E S. This in turn implies that 

S C Sp(G, X), so that o-(Sp(G, X)) = z(Sp(G, X)) = 1. [] 

REMARK 1. The following is an interesting consequence of the above 

theorem. Let (X, # )  be a Lebesgue space, and let tr be a probability measure on 

R (the real line) with ~r({0}) = 0 and lira sup,_® Re t~(s) = 1. As we have shown, 

there exists a non-singular, properly ergodic flow (T, : t E R)  with 

tr(Sp(T,, t E R)) = 1. Clearly, if s lies in the L®-spectrum of (T,, t E R),  then Tt~ 
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is non-ergodic. In particular we conclude that o'({sER : s ~ 0  and TI~, is 
non-ergodic}) = 1. This is related to problems discussed in [5]. 

REUARt< 2. Using the methods of [2, 6] one can show that the G-action on 

(X,/~)  in the above theorem may be chosen to preserve an infinite, tr-finite 

measure equivalent to /z .  

REMARK 3. In the special case G = Z (the group of integers), B. Weiss has a 
much more direct (unpublished) proof of the implication (2) =), (1) in the above 
theorem. The method used in our proof is related to an idea by E. Flytzanis in [3] 

and to techniques used in [8]. 

REMARK 4. For every locally compact, second countable, non-discrete, 
abelian group F with character group G there exists a non-atomic probability 
measure o- on F satisfying lira sups-® Re # ( g ) =  1 (of. [7]). An explicit method 
for constructing such measures on S 1 is described in [8, §5]. 
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